New research published in Nature Communications provides insight into how large-scale deforestation could impact global food production by triggering changes in local climate. In the study, researchers from the United States and China zero in on albedo (the amount of the sun’s radiation reflected from Earth’s surface) and evapotranspiration (the transport of water into the atmosphere from soil, vegetation, and other surfaces) as the primary drivers of changes in local temperature.
The research is the first global analysis of the effects of forest cover change on local temperature using high-resolution NASA global satellite data. A peer-reviewed paper based on the study, “Local cooling and warming effects of forests based on satellite observations,” hints at how land use policies could have economic implications from forest to farmland.
“Understanding the precise mechanisms of forest-generated warming or cooling could help regional management agencies anticipate changes in crop yields. Together with a knowledge of other ecological factors, this information can help decision makers and stakeholders design policies that help to sustain local agricultural practices,” said Safa Motesharrei, co-author of the paper and a systems scientist at the National Socio-Environmental Synthesis Center (SESYNC).
Agriculture–specifically, converting forest cover to plantations for oil palm, soy, rubber, coffee, tea, rice, and many other crops–is widely believed to be one of the main causes of deforestation. Such change in land cover could drive a rise or fall in local temperature by as much as a few degrees.
This kind of fluctuation could substantially impact yields of crops that are highly susceptible to specific climate conditions, resulting in harvests that are less productive and less profitable.
The authors say it underscores the need for a holistic understanding of forestry activities on local climate. They point out that while local impacts of forest cover change are some of the most relevant for management practices, they’re also the most poorly understood.