This news release is available inĀ German.
At first glance, there is not the slightest doubt: to us, the universe looks three dimensional. But one of the most fruitful theories of theoretical physics in the last two decades is challenging this assumption. The “holographic principle” asserts that a mathematical description of the universe actually requires one fewer dimension than it seems. What we perceive as three dimensional may just be the image of two dimensional processes on a huge cosmic horizon.
Up until now, this principle has only been studied in exotic spaces with negative curvature. This is interesting from a theoretical point of view, but such spaces are quite different from the space in our own universe. Results obtained by scientists at TU Wien (Vienna) now suggest that the holographic principle even holds in a flat spacetime.
The Holographic Principle
Everybody knows holograms from credit cards or banknotes. They are two dimensional, but to us they appear three dimensional. Our universe could behave quite similarly: “In 1997, the physicist Juan Maldacena proposed the idea that there is a correspondence between gravitational theories in curved anti-de-sitter spaces on the one hand and quantum field theories in spaces with one fewer dimension on the other”, says Daniel Grumiller (TU Wien).