Collective motion can be observed in biological systems over a wide range of length scales, from large animals to bacteria because collective systems always work better for adaptation than those which are singular. Individual bacterial cells have short memories. But groups of bacteria can develop a collective memory that can increase their tolerance to stress. This has been demonstrated experimentally for the first time in a study by Eawag and ETH Zurich scientists published in PNAS.
A central question in the study of biological collective motion is how the traits of individuals give rise to the emergent behavior at population level. This question is relevant to the dynamics of general self-propelled particle systems, biological self-organization, and active fluids. Bacteria provide a tractable system to address this question, because bacteria are simple and their behavior is relatively easy to control.Â
Bacteria exposed to a moderate concentration of salt survive subsequent exposure to a higher concentration better than if there is no warning event. But in individual cells this effect is short-lived: after just 30 minutes, the survival rate no longer depends on the exposure history. Now two Eawag/ETH Zurich microbiologists, Roland Mathis and Martin Ackermann, have reported a new discovery made under the microscope with Caulobacter crescentus, a bacterium ubiquitous in freshwater and seawater.